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FXNITE-STATE CCMPENSATORS FOR CONTINUOUS PROCESSES

T. L. Johnson :
Department of Electrical Engin..ring and Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 U.S.A. .

Abstract. Mathematical representation of feedback systems composed of both
continuous and finite-state processes is discussed . Such a representation
provides a new viewpoint for the design of computer control systems for
industrial processes , and clarifies areas in which further research is re—

red. Some motivating examples are provided.

Keywords. Automata theory; direct digital control; system theory; switching
theory ; computer control; discrete systems.

INTRODUCTION

The feedback interconnection of a continuous (the sequential machine) ; and Gallager (1968)
fi~jte_d4 ivipn~ional dynamic system and a f i- treats comsunicatians theory (the coder and
nit. state sequential machine is shown in decoder) . Considerable progress has been
Figure 1. Because the natural input and out- made in the last decade , with th. emergence
put spaces of such systems are defined over of mathematical systems theory, toward a uni—
different fields, two coupling elements, fying view of these disciplinss—th. works
termed a coder and decoder; are necessary to of Kalman, PaTh and Arbib (1969) and Padulo
define the transformations of plant output and Arbib (1970) being representativ , of a
to compensator input , and conversely. There broader literature.
is an extensive literature dealing with each
of the foregoing elem.nt~~for instance: Wil— The purpose of the present not. is to pin—
lems (1972) defines a dynamical systems the- point the shortcomings of existing theories
ory of continuous proc.ssea (the plant) ; So- when applied to the situation of Pig. 3 and
brow and Arbib (1974) reviã automata theory to propos. a representation for th. state of
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T. L. Johnson

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 U.S.A.

Abstract. Mathematical representation of feedback systems composed of both
continuous and finite-state processes is discussed . Such a representation
provides a new viewpoint for the design of computer control systems for
industrial processes , and clarifies areas in which further research is re—
quized. Some motivat ing examples are provided.

~~~~~~~~~~~~~~~~ Automata theory, direct digital control; system theory; switching
theo ry; computer control ; discrete systems.

Ii

INTRODUCTION

The feedback interconnection of a cont inuous (the sequential machine) ; and Gallager (1968)
finite-dim.n.io,tal dynamic system and a f i— treats co unications theory (the coder and
nit . state sequsnti~3 machine is shown in decoder ) . Considerable progress has been
Figure 1 • Because the natural input and out- made in the last decade , with th . emergence
put spaces of such systems are defined over of mathematical systems theory, toward a mi-
different fields , two coupling elements, fying view of these disciplines—the works
termed a coder and decoder; are necessary to of Icalman, PaTh and Arbib (1969) and Padulo
define the transformations of plant outp ut and Arbib (1970) being represen tativ , of a
to compensator input, and conversely. There broader literature.
is an extensive literature dealing with each
of the foregoing elem.nt~~for instance : Wil— The purpos. of the present note is to pin—
lems (1972) defines a dynamical systems the— point the shortco mings of existing theories
ory of continuous processe* (the plant) ; So- when applied to the situation of Pig. 1 and
brow and Arbib (1974) review automata theory to propos. a representati on for the stat. ~f
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• such systems. Such a representation pro— the form H — (W, N, Q, 6, 1) where the finite
vides the cornerstone of a theo ry for the sets N, Z , and Q are the input, output, and
direct design of finite-state ccmpensators • state sets, respectively; and 6: I x N x Q -P Q
for continuous processes , which subsumes A: I x V x Q + N are the next—state and cur-
purely continuous control systems and purely rent output , mappings, resp ectively . The tine-
finite-state feedback systems as special set I is taken as a sub—interval of the inte—
cases. gers . (The notation has been slightly modified

from that of the literat ure to conform with
THE ST~ ’us QUO: SOME NECESSARY IN- I part (a) 1.) Th. machine is thought of as the
NOVATIONS 

. 
recursion q

3143 — ó(kSu~~~~) for any k > k 0sX ,

In motivating the new representation , j~ is and the output map A (k Su~ 1~~~) 5k • It should
most appropriate to recount the stat us quo: • be noted that ~ of part (a) is analogous to

I &(k ,u~ , 6 (k—1,u~_1, ~~~~~~~~~~~~~~~~~~~~~~~~~(a) Continuous Dynamic ~~~~~~~~~ 
• the ccmposition of & with itself k—k0 tines.

These are characterized (Willeas and Mitter,
1971) by sets of the form E — Cu, U, Y, V, x, (a) Coding and Decoding:

• $, r) where +Let A, B denote (finite) alphabets and let A
U: input 5Ct (B1 ) denote the set of nofl-empty finite-lengthU: input space +Y: output set sequences of el aents from A(S) . Let h: A -

~~~

Yz output space 51 be a homomorphism; then the set h(A)
X : state set Ch (a) seA) is terLed a code. h (A) is uniquely$: state transition map 

• ~~~~~~~~~ if f h is an injection.r : read-out map
These definitions si~~~~rize standard resultswhere U, Y are usually taken as Euclidean f~~~ the theo ry of noiseless channel coding;vector spaces on the field of real numbers, 
~~~~ also Gallager (1968) .R, U~ T 9 U a n d V: T + Y a r e normed linear

spaces on the time interval TC R. The eye- The objective of the next section is to char-tam Z will be assumed finite-dim”sional ~~ acte rize the interconnection shown in Fig. 1 asthis discussion and X is correspondingly a dynamic system of some general class. Evi-
taken as a Euclidean vector space. The state dentl y, (a) - Cc) are not directly compatible intransition mapping is continuous, with their present condition. This is partly a

problem of notation and technicalities , but$: T x T x U x X + X, and the readout map there r~~~4-” ewe fnvwl*niental difficulties. In
• Cc), for instance , one would like the alphabet

r: T x T x U X X 4 7 iS ac~tinuous. 1 to be real rather than finite-valued; but so
long as B is finite, h(.) could never be an

In addition , • is required to have the iden— hom~” orp hism. In (b) and (ci , the real—time
tity, causality, and semigr up properties , sequence of state transitions has been abstract-

ed, and only the ordering of transitions rC-
Ci) •(t ,t , u( •) ,  x) — x for all tET, mat’~~; but for continuous dynamical systems asn(.)eU , rEX. in (a) , actual transition times in 0(t) most be

preserved . The basic operations on the fields• (ii) For any t > t0, both elements of T, in (a) and (b) are different , and thus the
and an x C X if ü ( T ’ = ü ( T )  r < t  class of poisib1e fUflcti0n5 g.Uerated by~~~aM

0 1 ‘ — 2 ‘ ‘ A are inherentl y different . Finally , it might
then ~(t,t0, u1(), x1~) •(t ,t0, 

~~ necessary to generaliz , the input space of
u (~) x ) (a) to include distributions (i.e., impulse

2 0 trains ) .
• (iii) For any t3 

) t1 
) t0, all elements of

— — ~~~ A _,_, &a., —_—~~i — _ ~
__ 

~~~~~~~ _&A~~ •~~— -~~~— --- - - — . - — — ‘  — ~-~‘- 
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from that of the literature to confor m withTHE STMVS QUO: SOME NECESSARY IN- t part (a) 1•) The machine is thought of as theNOVATIONS recursion — 6 (k fu~ 1~~~) for any k ) k
0
cI,

and the output map X Ck ,u.~
, q3~) — It shouldIn motivating the new representation, it is

most appropriate to recount the status quo: • be noted that~~ of part (a) is analogous to
6(k ,u~ , 6 (k— 1,u~_1, ~~~~~~~~~~~~~~~~~~~~~~~~~ •

(a) Continuou, Dynamic S~’st n~5~ • the composition of & with itself k—k
0 times.

These are characterized (Willeas and Mitter,
1971) by sets of the form £ — (U, U, Y, V , x, (a) coding and Decoding:

I •, r) where 
+Let A, B denote (finite) alphabets and let A

U: input set (a1) denote the set of non-emp ty finite—lengthU: input space
7: output set sequences of elements from A(B). Let )*:Vs output space 

B
+ t,~ a homomorphism; then the set h (A) —X : state set 
(h(a) lacA) is termed a code. h(A) is uniquely$; state transition map 

• decodable if f h is an injection. 
•r: read-out map

These definitions supsta rize standard resultswhere U, 7 are usually taken as Euclidean • from the theory of noiseless channel coding;vector spaces on the field of real numbers , see also Gallager (1968) .R, U: T + U and Vs T 4 7 are normed linear
spaces on the time interval TCR. The 

~~~ The objective of the next section is to char-tam Z will be assumed finite-dimensional ~~ acterize the interconnection shown in Fig. 1 asthis discussion and X is correspondingly a dynamic system of some gener al class. Evi—taken as a Euclidean vector space • The state dently, (a) — (a) are not directly compatible intransition mapping is continuous, with their present condition . This is partly a
problem of notation end technicalities , but$: T x T x U * X -P X~ and the readout ~~~ there r~~~ in some fundamental difficulties. In
(a) , for instance , one would like the alphabetT x T x U x X 4 7 is continuous. A ~~ be real. rather than finite-valued; but 80

long as B is finite, h C .) could never be anIn addition, $ is required to have the iden— homomorphism. In (b) and (ci, the real-time• tity, causality, and semigroup properties: sequence of state transitions has been abstract— -
~

ed , and only the ordering of transitions rë-(i) $(t,t, u(.), x) — x for all tsT, ! mains ; but for continuous dynamical systems asu(•)dl , rEX . in (a) , actual transition times in 0(t) must be
preserved. The basic operations on the fields(ii) For any t > t

0
, both elements of T, in (a) and (b) are different , and thus the -

•class of possible funct ions generate d by $ and -and any x0CX if ü1(t) E u2 (r) , 
A are inherently different. Finally, it mightthen $(t,t

0
, u

1
(~), Lo) — $(t,t0

, be necessary to generalize the input space of
(a) to include distributions (i.e., impulseu2 (~ ) ,  xe) .  
trains ) .

• (iii) For any t2 > t1 > t0, all elements of
T, any u( .)cU , and any x0~X , $(t29t0, PROPOSED REPRESENTATION
uC ) ,  x0) — $(t2

,t1, u(s), $(t1,t0, By introducin g some formal assertions, we dent—u ( .) ,  x0) ) .  onstrate how definitions (b) and Cc) may be
modified so that the system of rig. 1 may beThe system is thought of as the pair of equa— interpreted as a generalized dynamical system.tions x(t) — 4(t,t0, u(•), xCt0)) and y (t) ~ The demonstration that these assertions are

• r(t, t0, u(t), x(t)), t > t 0 both in T. Re 

-

_______________________

ferring to Fig. 1, the input u (t) may be taken 3
By allowing 6,A to depend on )~ I, the structureas the pair (u(t), 0(t)).

àf the next”state and current-output mappings
(b) Finite—State Sequential Machines Fi— may vary with k. While V could denote any in.-

site Automata), put string of finite length, it is proper here
to associate it with an input set as used in

These are usIS I 

~~~~4k~
he initial state ci~~ aniTndex k0 are
aified in the defin i.tion of N.
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consisten t is beyond the scope of thi s brie f elapsed time since the most recent (or nnote . First, a definition is introduced - most recent) state transition(s) , at the cur-that generalizes the machine N to have a rent input transition time, tk~ Between in—real—t ime structure.
put transitions , the state ,may, of course,

Definition l~ A finite—state dynamic ~~~~~ 
undergo a large (but finite) number of

~ transitions at intervals detemeined by theR~L~” interval TCR, is a set r — (W ,W, Z ,6,Q ,
6,1) . The sets ~ TrW and~~ — TxZ for fi— internal system delays. However, these are
site input and output sets W,Z respectively, completely predictable given the past state

- 
— W and ~ are spaces of sequences of elements and the current input , and hence the next

in ~ and ~ for which the first index is state can be computed. This is considered
— monotonically increasing. For a positive to be the key defining property of the
• integer n and finite set ~~~, the state set “state” of a system. A major technical oh—

has the structure The state- stacle in defining real-time automata has
transition map Z’: — satisfies the thus been successfully reauv .4—it would
foU~wing propert_ies: Given a sequence otheiwise be impossible to project the “next

state” of such a system until the “next” in—• (~
} - {t.~, v~Jc (U, let Tk denote the ~ put transition were knownt Consider now the

ject ion of ~ onto T, i.e., the set of input natural structure of the state-transition
transition-times (tv), kii’1k0, k0+l. k0+2,.... map, 8 between input-transitions t~ and
For any {~ }c (U, t~, t~ , t~eT~, ~~~~ then tk+l i.e., &(t 3c+lr tks {(t ~~w~)}1 (t~~~~) 5)

which is the analog of the next—state map,(i) &(t~~t~.(wJ.q) = q 
6, in a finite—state sequential. machine, N.

- By causality , the map can ~~i~y depend on(ii) for any t~ < t~ and {~ }dU such that the single pair (tk-3. Vk+l) of the cc-
on Lt~.t~], then 6(t~.t~~ quence {Ct~~w~)} for a given Ic. ~~may al—

q) —~~(t~~ t~ {
~). ~i). ways be represented as two functions in this

• (iii) whenever ~~~~~~~~ ~~~~~~~ (~~}, ~) — single-transition case:

6(t~,t~, 6(t~ t~. (*), i)).  6 — 
~

5t ’6q~_. 
—Finally, the readout map A: TxTxWxQ -, Z. I where - 

~~C~~+1~~ swk+l, ~~~~~~~
A more concise definition of a finite—state 

(tk+1. ~~. ~~P 1~ 
(Tk~ ~~~~dynamic system could be given if it were not —

for our attempt to clarify how the convert-
tional notions of dynamic system end finite- i.ul,2 , .. .  ,n. 2 The function projects the I
state sequential machine have been reconcil- £-th state transit ion time, t~4 1~ prior toad. Actually, the ideas are quite simple.
The key concept is that all “spontaneous” the current input transition, while the
state transitions should ultimately be at— function 6~ projects the current state due
tributa ble to either the initial state or

to the current input—transition C~~+l,wk+l).some input transition; the rate at which
such transitions occur is due to any inher- It is readily verified that this definition
ent finite delays for any implementation of applies to both synchronous and asynchronous
the machine . Consequently, each “input” can machines. Finally, one can appeal to the
be characterized by viewpoint taken by allen and Gallager (1977)

in viewing the (initial) state of a machine
(a) the time of the current input transi— to include both “internal registers” and

tion , t.,~ “mass storage ”—th us the compensation algo-
rithm itself becomes part of the machine’s

(b) the new input value (for t > t~) initial state. In other words, selecting
the control algorithm corresponds to choos—

This is denoted as — (ta
,Wk
} above. Notice ing an initial data set for the machine.

The formulation is sufficiently general tothat when there are several input lines, a allow that the algorithm execution changestransition on any one of them is considered the machine Stz~~ ture itself. x~ is approx—
• -~~~~

--
~~~~~~~~~~~~

4
t.ico ~~~~~~~~~

— -
~
-

~~~~~~~~~~
• ~~~~~~~~ ~~~~~~~ a •~~~~—~—-~ - — ~~~~~

_. —



~~~~~~~~~~~~ta th~ 
I 

.—
~ ax. spaces oz sequence _~ ent ir~ L tbe next

in ~ and I for which the first index is state can be computed . This is considered
mortotonically increasing . For a posittv. to be the key defining property of the
irit.g.r it and finit. set ~~

‘
, the state set “state ” of a system. A majo r technical oh—

has the structure ~ — (Tx0)~ me state- stacle in defining real-time automata has
transition map Z’

~ T satisfies the thus been successfully removed--it would
othezw ise be impossible to project t~~ “nextfoli9wing prop.r~iess Given a sequence state ” of such a system until the “next” in—(i) . {t~, w~)c (U, let TIc denote the pro- 
put transition were known i Consider now the

jection of ~ onto T, i.e., the set of input natural. structure of the state-transition
transition-tim.s (t~}, k-k0, k0

+l, k0+2,.... map, ~~between input—transitions t~ and
For any (~ )c W, t~, tjs tLc’rk, ~~~ then tk+1? i.e., &

~~k+l~tk~ 1(t j~I~j~~~ (r~~q~)5)~
which is the analog of the next-state map,(i) ~~~~~~~~~~ — 6, in a finite—state !~equentia1 machine, N.By causality, the map can only depend on(ii) for any t~ C t~ and (~}cW such that the singl. pair (t

~,c+i wk+j) of the se-
{‘} on (t~.t~)~ then ~~~~~~~~ quence {(t ~ .w~)} for a given Ic. .5 may al-

q) — Z(t~ t~1
, ~~~~‘ q~ ways be represented as two functions in this

(iii) whenever t Ct <t~ , r(t~
,t~

, (i) , ~
) — single-transition case:

~~~~~~~~ ~~~~~~~~ {~~}, i) ).  6 • (6
~~

, 6 ~q
Finally, the readout map A: ~ cTxWxQ + Z. I where — ‘

~~
(t k+1•t k~

Wk+l, (Tk,~k~~~
A more concise definition of a finite—state

• dynamic system could be given if it were not — 8~
(t)c+i’ t.~, ~~~~~~~~~~~ 

~~k’ j~~~)~~~ )

for our attempt to clarify how the conven-
tional notions of dynamic system and finite £ 1 . 2, . . .  ,n. 2 The function 4 projects the /

• state sequential machine have been reconcil- £—th state transition time, prior toed. Actually, the ideas are quite simple.
• The key concept is that all “spontaneous” the current input transition, while rh.
• state transitions should ultimately be at— function 6~ projects the current state due

trib utable to either the initial state or
to the current input—transitionsome input transition ; the rate at which

such transitions occur is due to any inher- It is readily verified that thi s definition
ent finite delays for any implementation of applies to both synchronous and asynchronous

• the machine . Consequently , each “input” can machines. Finally, one can appeal to the
be characterized by viewpoint taken by Allen and Gallager (1977)

in viewing the (initial ) state of a machine
(a) the time of the current input transi— to include both “internal registers” and

tion , t.,~ “mass stora ge”—thu s the compensation algo-
rithm itself becomes part of the machine ’s

(b) the new input value (for t > t~) initial state. In othe r words , selecting
the control algorithm corresp onds to choos—

This is denotad as 
~ 

(t.
*
.wk
} above. Notice ing an initial data set for the machine.

The formulation is sufficiently general tothat when there are several input lines, a allow that the algorithm execution changestransition on any one of them is considered th. machine structure itself. I~, is approx—a transition time. The state set is also a imately correct to view the map 6 as the
produ ct space; each “state variable ” takes implementation of a machine ’s “control struc—
values in the finite set Q. The time-para-
meter carried with it is the time of the
most recent state—transition strictly prior that (tk~S)5 is shorthand for ~~~~~~~to the current input—transition , and qcQ is 2 2associated with the value of the state fol— ~~~~~~~~~~~~~~~ In general, it may also

• lowing that state transition , depend on k~ but is bounded above.I thus elements of ~ take the form (T~~~) 5. asI i~ may in genera l be necessary to keep count
of a finite number of prior transitions .
Again it is important to note that TIc is *1— ,2..ways by convention the

• • • • • •  —• •~~~• • ~• • j
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tore” , and ~ as implementing a “data flow where ~ ~ tc(T) — sup lf (t ) I takes valuesq tETstructure”, in the terminology of computer in the extended real numbex*, andscience. a(t—t0
)

$(t ,t ,u(•) , x ) — e , x (4.1)Returning to the context of the compensation 0 0 0
problem, it remains to defin. the coder and
decoder. Th, following definitions would • t ~Ct—r-t0)appear natural: 

• +1 u(r) dt

Definition 2: ~ dynamic cods is a causal -

aapp ing C : Y4 W.  ~~dyI’—i c d.coder iL a
causal mapping Di 14 (1, where Y,U,W,Z are • and
as in th• definit4o”e of a cantinuaus dynan- - •

thai system and a finite-state dynamical r (t, t0,u( •), x0) — x (t) — y(t) • (4.2)
system, respectively. Some of the issues of
def ining codes of this typs have been recent- The encoder is a threshold function withly discussed by Ziv and co-workers (1977) . • 

level I and binary outp~4, which is sampled •
____ 

at regular intervals t~ — k6. Tb. coder in-
• put takes values in the space

~~~~~~~~~~ Stabilization of a first-order
system. Figure 2 shows an uMtable first- (U — {(t

k.*k)Ik-o,1,2... : 
~kIW

~ 
t~eR~order lag, which is to be stabilized (if pos-

sibi.) by a D—type flip—flop. “me forward— where W — (0, i}. me coder Li then defined ,loop is a dynamical system with time-set by th. map Cs C(T)J where fo4yeC(T) , 7— (0,*), characterized 
~~~~~ Cy 

~
‘ {tIc.Gk} and .

E —  (a,C(T),R,C(T),R,$, r} -

• real n~~bers; C(T) ~ cont. functions on
T.

Figure 2(a) : Stabilization of an Unstable Lag
• by a D-Type Flip Flop
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F~ Definition 2: ~ dysanta code is a causal •

aapping C s Y + W .  ~~dynamic d.cod.r i~, a — - x(t)causal mapping D1 1 • U, where Y,U,W,Z ar e and
as in the definit4-o’~. of a continuous dynam- -
thai system and a finite-stat, dynamical r (t ,t0,u(’), x0) — z (t) — y(t) • (4.2)system, respectively . Same of th. issu.a of
defining codes of this typ. have been recent- Tb. encoder is a threshold function withly discuss .d by Ziv and co-workers (1977) . 

level 0 and binary output, which ii sampled 
-• at regular intervals t~ — k6. The coder in-

put takss values in the space
~~~~~~~~~~ Stabilization of a first-ord er
system. Figure 2 shows en un4table first— (U — ((t.~

,*k}lk o,l,2..., 0km’ tj &3order lag, which is to be stabilized (if pos-
sible) by a D-typ. flip-flop, me forward- where w — {o,i). The coder is then definedloop is a dynamical system with time-set • by th. map C: C(T)-8 where fo4ycc (T) ,T — (0,0) ,  characterized “~~ : Cy 

~
. (t

z
sO

k
} and /

E — (a, CCr) , R, C(T) , a, +, r} • 
-

3R ‘ real. nusbers; C(T) ‘ cont. functions on
T. 

-

Figure 2 (a) : Stabilization of an Unstable Lag
by a D-Type Flip Flop 
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Figure 2 (b) s Sketch of Typical P.esponses
for Case 2(u )
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I.
.

l y(t~) > 0 • (ii) If 0(0 , the system is only stable if{ 
0 y(t~ ) < I 

x0”zi7a , and then x(t)~ A/a.

(iii) If PA/a, the system is not stabili—t The 

zab].e for any x0.
lip—flap is almost the simplest example

of a finite—state dynamical system; it is (iv) If 0<O<A/a is chosen prope rly, a limit
characterize d by cycle1~is obtained if 0<x0<A/a; x0 — :0.-

j  , ,h. ~. and A/a are critica lly Stable initial
• r — tW, (U, 5, 2, Q, 6, A}. • conditions.

Case 2: B~’OI where — J~x(O,l), ~ — Rx(o,1}, and for
z — (o,i), (i) If B)0, the results are s4~ttar toCase 1.
V — ((tk,c}Ik_o,1,2,...;cEz ; J~

(j~J1~
(ii) If 8(0, B must be chosen so that

The state-set is ~~~

‘
.‘ ~~~~~ where T IcCR , (A+B) ~.O,,and IcES/a, (A+B)/aJ leads to

a limit cycle about 0. If (A+B) c0,
Q (0,1) . In this device, the state results similar to Case 1 are obtained

merely stores the value of the past input, Initial states x0c(B/a, CA+B)/al may
which was always sampled A seconds previous- be stabilized.
ly, i.e. (51~~~ ) — “~ i—1~ 

Thus the state—

transition map is implemented by Nos~ interesting is Case 2, (ii) , and a re-
presentative trajectory is sketched in Pig.
2 (b) . The quantity - at~ affects the ampli-6(t~~t~~ (tIcI Q

Ic ). 
(~ ,qj )) — ~~ 

(~~w~1~~ ) ~ tude of limit cycle oscillations.

• (t&, cj
) i~j 0  The purpose of this example is to illustrate

• how the general nota tion appli es in a spe-
and the output map is cific synchronous finite—state compensation

problem, and to illustrate that indeed sta-
“ bilizatien of continuous systems may be

~ V: Z + C ( T ) achieved with a very economical finite-state
where {t

~
,zk ) . d~(t) is defined by ~ (t) — compensator which can be synthesized with a

threshold device , flip—flop, 2—level supply
whenever t5ft.~

,ta+A) and A, B are rca]. and gate. The prop osed representation was
‘/ numbers. The j~esign parameters in this feed- used to conceptualize the problem in this

back system are thus 6, A and B. case , but is not in itself a design method.
Note that the product space for representing

The problem of determining which, values of the c Losed-loop system i.s imeediate, given
and a)0 yield a Lagrange stabil ized sys— E and r. ‘tern by appropriate choice of 0, ‘A and B has Example 2: A Finite -State Dynamical System

been solved by D. 0. Wiuipey (1977) . Since ’ with Feedback . A simple asynchronous fi—
the system is synchronous , the stat e—tra n— nite—state system, Johnson and 1~ovacs (1977) ,

recursions , yielding the au~~ented system4 in Fig. 3. No gene~~l bet e~~1icit
sition maps 4, 6 may be replaced by one—step with delays in an internal feedback loop is

theory for this class of system is known to
the author , yet it is readily represented

•. _ [ ~~~~~~~~ “1 L~~~~~ •. 

(A/a)
as a finite—stat e dynamical system using the

____________________ ~~~~~~~~~~~~ a.~~~~~ .... i. r.. ~ _~~~ ~~a_i.._ _ . b
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1~ 0

• and A/a are critically~Stabi. initial‘ r — tN (U, 5, 2, Q, 6, 1) ‘ conditions .
I

/ where N — Rx{o,l), ~
‘ -‘ ix(o,l), and for 

Case 2: B~0

Ci) Xf B>0, the results are sjmilar to
Case 1.

• V — ((tk,c}Ik_o,l.2,...;cEzJ tkE1O~ (ii) If 8(0 , B must be chosen so that
The state-set is b~

’
I~ ~~~~~ where t kcR , (A+B) >0,,and Oc(B/a, (A+B)/aJ leads to

a limit cycle about 0. If (A+B) cO ,
. (0 ,1). In this device, the state results similar to Case 1 are ob’

~ained
merely stores the value of the past input, In iti ‘~ states x0c[B/a, (A+B)/a] may
which was always sampled A seconds previous- be stabilized.
ly, i.e. ~~~~~~ ‘~k—l~ 

Thus the state—
• trans ition map is implemented by 14os~..interesting is Case 2, (ii) , and a re-

presentative trajecto ry is sketched in Fig .
Z’ct~ St ~

; t k .Qk . (~ .q~)) — ~ (A.w~~~) i-.~~~~• 2 (b) . The quantity — ad affects the ampli-
tude of limit cycle oscillations.

• (t ~ CLj ) i’~j 0  The purpose of this example is to illustrate
• how the general notati on applies in a spe—

and the output map is cifia synchronous finite—sta te ccmpensation
problem, and to illustrate that indeed sta-

V: Z . C CT) bilization of continuous systems may be
achieved with a very economical finite-state

where {t~,z.~) • d(t) is defined by tt(t) • compensator which can be synthesized with a
threshold device , flip—flop, 2—level supply

Az
~

+B whenever tc[tk,t.~
+A) and A, B are real and gate. The proposed representation was

/ numbers . The design parameters in this feed- used to conceptualize the problem in this
back system are thus 6, A and ~~. 

case , but is not in itself a design method.
Pote that the product space for rep resenting

The problem of determining which, values of the c Losed-loop system ~.s Jamediate , given
*0 

and a>0 yield a Lagrange stabilized sys and r.
tern by appropriate choice of 0, A and B has Example 2: A Finite—State Dynamical System
been solved by D. G. Wimpey (1977) . Since with feedback. A simple asynchronous Li-
the system is synchronous, the state—tran— nite—state system, Johnson and Y~vacs (1977) ,

- sition maps 4, 6 may be replaced by one—step with delays in an internal, feedback loop is - •recursions , yielding the augmented system4 
shown in rig . 3. No general but explicit
theory for this class of system is known to

L I I q~ 

as a finite—state dynamical system using the
prop osed framework. Due to space limita—

rx (t~+1)1 r cad (A/a) (i_cad) 

[x

(ti
)] 

the author , yet it is readily represented

[qj+1 
j 1 0 0 tions, we shall not spell out the fo~~~lisms

but only indicate the key ideas . Let
• 

(t
k
,wk

} denote the sequence of input transi—

ad tion times t~, where if d(t~ ) > 0 and
+ (B/a 5~ (l— e )

0 if d(t ) < 0; the set {tld(t)=eJ is as—

• 
[

sgn{ead x(t ~ ) + a~~~(M~+B) a~ 
1 sumed to have ‘measure zero, and d(~ ) is also

— 0) 

Cl-c ) j assumed to have a degree of smoothness such
that Itk+],~

tkI>Ai. One (minimal) represen-
tation is obtained by taking as states

Careful consideration of these equations
leads to the following cases :

• Case 1: 8—0 11; Z > 0

If] = Isgn
• 

(j ) If x0<0, the system is not stabili—~~~~ f
zable.

• • • • • • • ‘- • • • -‘- • - • -- --•-‘••-- • • • - • • • •‘-•-----•-~~ - •‘•--• •---—•• • • • • • • • •
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Figure 3: A Finite-State Sy~tcrn with Fecdbagk
through delays A1, A2

s(t
~
—T
~
) + 

T~ transition will occur at tk_l_ T
k+A2 and

— — — 1,2 T
k

I O S or (ii) if s(tk+l) 0, no further
changes will occur until t.~ and also Tk_0.
If ~k 1 — 3., and ~~2) is large a cycle of

where is the elapsed time since the most period 2A2 and duty cycle 3. will be propa—
recent switching of s for t !. t~ (rk — 0 if gated , and T

k may be determin ed by ( r ~ + t~)
s switches at txh and — ~~~~~~~ is the —~ 2A2. Note that the system of rig. .3 is
elapsed tim. since the last input transition . a particular instance of the combined coder—• The key issue is to verify that 6 is well— finite stat e dynamic system portion of the
defined for one time step i.e., given general feedback system shown in rig . 1.

£ £ •
~~~~~~ f i d ’ r ~ “)Cr k_l~ ç_~

) and (tk , w
k I P  ~ ‘ k ’ ~~ DISCUSSION AND CONCLUSIONS

Clearly the new input defines th e last state
‘component of , q • If r~~3,)0, s~ will switch The results are still preli minary . The fol-’

~ ~~~ and if also >A , s lowing issues can now be addressed : (1)at tk_l~tk_]. 1 k—] 2 2 proving when or if such a representation is 
J• —~‘&%‘— — .— — —~~ o - - , •,,~ds1i~• • ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • — - ~~~~~~~~~~~~ ~~~~. ~~~~~_
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Figure 3: A Finite-State Syt~tcm with Feedback
throug h delays A1, A2

~ 
[5  (~~-r ~)~ 1 ~~~~ 1 transition will occur at tx l

_T
k+A2 and

— i 
£ — 1,2 T

k
I
~O; or ~~~~ ~~ = 0, no further

2 + (~~~~ 
I~~~~~~

changes will occur until t~ and also0k 1 C -’
~k~ J 

T3c j  
If 

~k-l — 1, and (T~) is large a cycle of
where is the elapsed time since the most period 2A2 and duty cycle 3. will, be propa— •

• 
-

recent switching of 5 for t t)~ ~~k — 0 if gated, and may be determined by (T~ + t~)
s switches at t,~) ,  and r~ ~~~~~~~ is the mod 2A2. Note that the system of rig. 3 i s
elapsed time since the last input tran sition . a particular instance of the combined coder—
The key issue is to verif y that 6 is well- finite st~te dynamic system portion of the
defined for one time step i.e., given general feedback system shown in r ig. 1.
(t~~1, ~~~~ and (t.~

, 
~k3 ’  find ~~~ 

• 

DISCUSSION AND CONCLUSIONS
Clearly the new input defines the last state •

‘component of g~. If tk_l>O~ 
s~, will switch The results are still preliminary. The fol—

1at t)~~l tk_l + A1 and if also 4,1>A2~ ~2 lowing issues can now be addressed: (1)
proving when or if such a representation is

will switch at t
~~l~

tk_l + A2, but by defi- canonical; (2) examining the properties of
nition, these do not lead to further transi— closed-loop dynamics obtained by state aug-

mentation; (3) developing design and simula-
tions of s in (t k..,l~’r~~,l + A2 , tk..,1

)
~ 

and tion methods for such systems; (4) exainina—
thus 

~~
‘ ~2 

remain constant, until tk_l . tion of the natural operator algebra on the

Thu s for all > 0, g is known at product space; (5) generalizations to st o-
chastic-finit e—state systems.5

(if tk_l O t q~~1t.q(t~_1) .  From tk_1 to tk~
1 the input has constant value Wk_l s so it is ________________________

• simply a matter of s’~mulating the transi— 5While technically involved, the generaliza-
tions up to t

ks an interval of length tion of these ideas to the stochastic case
roduces should be feasible. It requires synthesis ofand then determinin g ~~ ~‘k results on continuous-time stochastic sys—

an s-transition at tk• ,Clearly this can be tems, stopping times, and Markov chain

carried out. In fac t , if ~k ..,l 0 and (i~ ) iS theory, which are already well—developed in

large, than Ci) if s(T~ _1) 1, a single ~~~~~ 
the lite rature .
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The primary contribution of this note is that
a systematic and general method for analyz—
ing the real-time behavior of both synchro-
nous and asynchronous finite-state sequential
machines has been discovered , and that this
is representati on is convenient for analyz-.
ing feedback systems. A design method based
on this representation has th. potential for
yielding digital control algorithes which
are directly implementable, thus avoiding a
tedious process of approxi mating controllers

• based on ordinary calculus or, on the other
I hand, ~bn approv{nI~te representations of plant• dynamics. •
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is representat ion is convenient for analyz-
ing feedback systems. A design method based
on this representation has the potential for
yielding digital control aigorithes which - 1 •are directly implem.ntable, thus avoiding a
tedious process of approx imating controllers
based on ordinary calculus or , on the other
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